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Abstract

This paper is concerned with finite element methods of
least-squares type for the approximate numerical solution
of incompressible, viscous flow problems. Our main fo-
cus is on issues that are critical for the success of the
finite element methods, such as decomposition of the
Navier-Stokes equations into equivalent first-order sys-
tems, mathematical prerequisites for the optimality of the
methods, and the use of mesh-dependent norms. In con-
clusion we present a novel application of least-squares
principles involving an optimal boundary control problem
for fluid flows.

1 INTRODUCTION

In this paper we examine the use of least-squares varia-
tional principles for the numerical solution of the incom-
pressible, steady state Navier-Stokes equations. In the last
few years the corresponding least-squares finite element
methods have been receiving increasing attention in both
the engineering and mathematics communities; see, e.g.,
Aziz et al. (1985)-Bochev (1997), Jiang et al. (1990)
- Lefebvre et al. (1992). This interest has been largely
motivated by the significant analytic and computational
advantages offered by least-squares principles in the algo-
rithmic design that are not present in, e.g., mixed Galerkin
discretizations. Specifically, in the context of the Navier-
Stokes equations these advantages are as follows:

• methods are not subject to the inf-sup (LBB) stability
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condition:
=⇒ a single approximating space can be used for
both the velocity and the pressure;
=⇒ implementation of the algorithms is simplified
and more efficient;

• used in conjunction with a Newton linearization
least-squares lead to symmetric, positive definite lin-
ear systems, at least in the neighborhood of a solu-
tion:
=⇒ efficient iterative methods, e.g., conjugate gra-
dients, can be used in the solution process;
=⇒ algorithms can be implemented without assem-
bly of the discretization matrix;

• essential boundary conditions can be enforced in a
weak, variational sense:
=⇒ approximating spaces are not subject to the es-
sential boundary conditions;
=⇒ simplified implementation for domains with
complex geometries.

However, it is now well-understood that successful uti-
lization of these advantages requires a thorough consid-
eration of the settings for the least-squares method. In
many settings such as the primitive variable formulation,
least-squares methods suffer from two serious problems.
The first one is that conforming discretizations require
the use of continuously differentiable finite element func-
tions. The second one is that the condition number of
the discrete equations is often proportional to h−4, where
h denotes a measure of the grid size. As a result, most
of the recent research; see, e.g., Bochev and Gunzburger
(1993b) - Bochev (1997), Jiang et al. (1990) - Lefebvre
et al. (1992), has focused on applications of the least-
squares methodology to the Navier-Stokes equation writ-
ten in an equivalent first-order form. Besides the fact that
the use of first-order systems helps to avoid the above two
problems, it also has the significant added advantage of
allowing direct approximations of physically meaningful
quantities such as vorticity and stress. In the next sec-
tion we give a necessarily brief outline of three basic first-
order decomposition approaches that have been used in
the context of least-squares methods. Then we describe
the corresponding finite element methods and their re-
spective properties.

2 FIRST-ORDER SYSTEMS
Let Ω be a bounded, open domain in RI n, n = 2, 3. We
consider the steady state incompressible Navier-Stokes
equations given by

−ν4u + u · ∇u +∇p = f in Ω (1)
∇ · u = 0 in Ω (2)

u = 0 on Γ , (3)

where u, p, ν and f denote velocity, pressure, kinematic
viscosity (the inverse of the Reynolds number Re), and
a given body force, respectively. Transformation of (1)-
(2) into an equivalent first-order system requires a choice
of new dependent variables, and addition of one or more
compatibility conditions. Customarily, the new dependent
variables involve derivatives of the velocity field. Three of
the most common choices can be described in terms of the
nonsymmetric velocity gradient tensor ∇u as follows.

Vorticity formulation. The new variables are given
by the skew-symmetric part of the velocity gradient. This
choice corresponds to the use of the vorticity

ω = ∇× u (4)

as a new dependent variable. In view of (2) and the vector
identities

∇×∇× u = −4u +∇∇ · u , (5)

u · ∇u =
1
2
∇|u|2 − u×∇× u , (6)

one can replace (1) by

ν∇× ω + ω × u +∇r = f in Ω , (7)

where r = p + 1/2|u|2 denotes the total head. This
yields the velocity-vorticity-pressure Navier-Stokes sys-
tem given by (7), (2), and (4). In 2D and 3D this system
has 4 and 7 unknown fields, respectively. In the latter case
it also must be augmented by the compatibility condition
∇·ω = 0; see Chang and Gunzburger (1987), and Chang
and Jiang (1990).

Stress formulation. The new variables are now
given by the symmetric part of∇u (see Bochev and Gun-
zburger (1995)):

T =
√

2ν ε(u) ≡
√

2ν
1
2

(
∇u +∇ut

)
. (8)
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In view of (2) and the identity

∇ · T =
√

2ν (4u +∇(∇ · u)) ,

equation (1) can be replaced by
√

2ν∇ · T −∇p + u · ∇u = f in Ω . (9)

The corresponding velocity-pressure-stress first-order
system is given by (9), (2), and (8). The number of un-
known fields for this system is 6 and 10 in 2D and 3D,
respectively.

Gradient formulation. Here, all components of the
velocity gradient are used as new dependent variables
(see, e.g., Cai et al. (1997) and Bochev et al. (1996)),
i.e., we set

U = ∇u . (10)

Then one can rewrite (1) as follows:

−ν(∇ ·U)t + U · u +∇p = f in Ω . (11)

In Cai et al. (1997) the new variable U is called velocity
flux, thus the first-order system (11), (2), and (10) is usu-
ally referred to as the velocity flux Navier-Stokes equa-
tions. The number of unknowns increases to 7 in 2D and
to 13 in 3D. This system is seldom considered without
two additional constraints given by

∇(trU) = 0 in Ω (12)
∇×U = 0 in Ω . (13)

The need for these two constraints will be explained in the
next section.

3 LEAST-SQUARES METHODS
In this section we consider the development of least-
squares methods for the problem (1)-(3). Our main goals
are first, to present a general framework that can be used
for this purpose, and second, to discuss how this frame-
work can be adapted to various settings for the least-
squares methods.

To describe the main ideas let U denote a set of de-
pendent variables corresponding to a first-order Navier-
Stokes system. We denote the associated first-order
Stokes operator by L, and let RU denote an admissible

boundary condition for this operator. We express symbol-
ically the associated first-order Navier-Stokes equations
as

LU +N (
1
ν

, f , U) = 0 in Ω (14)

RU = 0 on Γ ,

whereN ( 1
ν , f , U) accounts for the nonlinear term and the

body force. We assume that L and R are well-posed in
the sense of ADN elliptic theory (see Agmon, Douglis
and Nirenberg (1964)), i.e., that L is uniformly elliptic
and that there exist function spaces X, Y, and Y(Γ) such
that

‖U‖X ≤ C(‖LU‖Y + ‖RU‖Y(Γ)). (15)

Then, with the system (14) we associate a least-squares
functional given by

J (U) =
1
2

(
‖LU +N (

1
ν

, f , U)‖2Y + ‖RU‖2Y(Γ)

)
.

(16)
In the following for simplicity we shall assume that the
space X is constrained by the boundary conditions in (14).
As a result, the boundary residual in (16) can be omitted.

It is not difficult to see that a solution of (14) minimizes
(16), and vice-versa. This observation forms the founda-
tion of the least-squares approach, i.e., solution of (14) is
sought by means of minimizing the functional (16). Mini-
mizers of (16) are subject to a necessary condition (Euler-
Lagrange equation) given by the problem:

seek U ∈ X such that(
LU +N (

1
ν

, f , U),LV + DUN (
1
ν

, f , U) · V
)

Y

= 0

(17)
for all V ∈ X,

where DUN ( 1
ν , f , U) denotes the Frèchet derivative ofN

with respect to the third argument. As a result, solution of
(14) is accomplished by solving the nonlinear variational
problem (17). To define a least-squares method for (14)
the problem (17) is discretized using a finite element sub-
space Xh of X. This yields a nonlinear system of alge-
braic equations given by:

seek Uh ∈ Xh such that(
LUh +N (

1
ν

, f , Uh), (18)
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LV h + DUN (
1
ν

, f , Uh) · V h

)
Y

= 0

for all V h ∈ Xh.

Although the explicit form of (18) may be quite
formidable, this problem has some very attractive com-
putational properties. In contrast to mixed Galerkin dis-
cretizations, the nonlinear variational problem (18) cor-
responds to minimization, rather than to a saddle-point
problem. As a result, in a neighborhood of a solution
the Jacobian matrix of (18) is necessarily symmetric and
positive definite. Furthermore, since the attraction ball of
Newton’s method is nontrivial, using a properly imple-
mented continuation with respect to the Reynolds number
one can devise algorithms that, even for large values of
Re, are guaranteed to encounter only symmetric and pos-
itive definite linear systems at each Newton step. These
systems can be solved using robust and efficient iterative
methods, such as preconditioned conjugate gradients; see,
e.g., Bochev and Gunzburger (1993b), Jiang et al. (1993),
Jiang and Povinelli (1990), and Lefebvre et al. (1992).

Majority of the available research literature has focused
on efficient implementations of methods formulated along
these lines, and obtaining solutions for a variety of model
and practical problems. Less attention has been paid
to rigorous mathematical analyses, including error esti-
mates and accuracy issues. Such analysis can be found in
Bochev and Gunzburger (1994) - Bochev (1997). Among
the main results established there is the fundamental role
of the a priori estimate (15), i.e., the well-posedness of the
associated Stokes problem, for the existence of optimal
discretization error estimates in the least-squares method.
Moreover, there exist counterexamples that demonstrate
loss of convergence order when (15) is not valid (some of
these examples are presented in the next section).

Mathematical analysis of (18) involves two stages. At
the first stage (15) is used to establish optimal error esti-
mates for a least-squares method for the associated linear
first-order Stokes problem. On the second stage, the ab-
stract nonlinear theory of Brezzi et al. (1980) is utilized to
establish the error estimates for the least-squares approx-
imation of the Navier-Stokes equations; see, e.g., Bochev
et al. (1996) and Bochev (1997). Under the assumption
that the latter have a regular branch of solutions one can
show that the accuracy of the approximate solution for the
nonlinear problem is of the same order as the accuracy of

the approximation for the linear Stokes problem.
In what follows we discuss three broad categories of

least-squares methods that result from application of this
framework. These categories are distinguished primar-
ily by the type of norms employed in the functional (16),
e.g., L2-norms, weighted L2-norms, and discrete negative
norms.

4 BASIC L2 METHODS
A seemingly natural choice of the spaces Y and X for
the first-order system (14) is given by products of L2 and
H1-spaces, respectively. Then, all equation residuals in
(16) are measured in the norm of L2. Such least-squares
functionals are quite attractive from computational point
of view. First, conforming methods can be implemented
using standard finite element spaces. Second, resulting
algebraic systems have condition numbers of order h−2.
Third, if an a priori estimate of the form (15) is valid,
one can establish optimal error estimates in the norm of
H1 for all variables, as well as optimal convergence of
multiplicative and additive multigrid methods; see Cai et
al. (1996). Unfortunately, validity of (15) in such spaces
cannot be always guaranteed. For example, a basic L2

least-squares functional for the velocity-vorticity-pressure
Navier-Stokes problem is given by

J (ω,u, r) =
1
2

(
‖ν∇× ω +∇r + ω × u− f‖20

+ ‖∇ × u− ω‖20 + ‖∇ · u‖20
)

. (19)

Least-squares methods based on (19) were first developed
in Chang and Jiang (1990), Jiang and Povinelli (1990),
Jiang and Sonnad (1991), Lefebvre et al (1992), and
Bochev and Gunzburger (1993a-1993b). In this context
(15) specializes to

‖ω‖1 + ‖r‖1 + ‖u‖1 ≤ C(‖∇ × u− ω‖0
+‖ν∇× ω +∇r‖0 + ‖∇ · u‖0) . (20)

However, analysis based on ADN theory; see Bochev and
Gunzburger (1994), shows that (20) is valid only for non-
standard “no-slip” and “no-penetration” type boundary
conditions (see also Jiang et al. (1994)), whereas for the
velocity boundary condition (3) the relevant estimate is
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given by

‖ω‖1 + ‖r‖1 + ‖u‖2 ≤ C(‖∇ × u− ω‖1
+‖ν∇× ω +∇r‖0 + ‖∇ · u‖1) . (21)

Table 1. Convergence rates for linear
approximations

H1 error rates
Function BC1 BC2 Optimal

u 0.12 0.93 1.00
ω 0.17 0.91 1.00
r 0.17 0.96 1.00

Table 2. Convergence rates for quadratic
approximations - functional (23)

Error rates
Function L2 Optimal H1 Optimal

u 3.05 3.00 1.99 2.00
U 3.10 3.00 2.01 2.00
p 3.34 3.00 2.10 2.00

As a result, at the first stage of the mathematical analysis
optimality of the basic L2 method for the Stokes equations
can only be established for such nonstandard boundary
conditions. Moreover, this suboptimality is not a purely
theoretical fact, but it can also be observed computation-
ally; see, e.g., Bochev and Gunzburger (1994), Deang and
Gunzburger (1997). For an illustration of this fact in Table
1 we present computational results due to Deang and Gun-
zburger (1997). This table compares convergence rates for
the Stokes problem obtained with a basic L2 least-squares
method implemented using piecewise linear elements and
two different boundary conditions. The (BC1) column in
Table 1 corresponds to the rates obtained with the veloc-
ity boundary condition for which the relevant a priori es-
timate (20) is not valid. The (BC2) column corresponds
to the convergence rates computed with a non-standard
boundary condition given by u · n = Un and p = P on
Γ, for which the estimate (20) is valid (see Bochev and
Gunzburger (1994)). While the rates obtained with the

nonstandard condition (BC2) are in good agreement with
the optimal theoretical rates, data in Table 1 indicates that
the basic L2 functional is not optimal for the Stokes prob-
lem with the velocity boundary condition.

Despite the poor convergence rates for the Stokes prob-
lem, in engineering practice, use of the basic functional
(19) for the Navier-Stokes equations with the veloc-
ity boundary condition has resulted in very high qual-
ity computational results (see, e.g., Bochev and Gun-
zburger (1993b), Jiang et al. (1993), Lefebvre et al.
(1992)). In the next section we offer one possible expla-
nation of this paradox, using as a starting point a different
approach for the formulation of the least-squares func-
tional. Let us also mention that computations with (19)
have likewise demonstrated very good agreement with
benchmark studies reported in the literature; see Figure
1. This figure illustrates driven cavity flow results ob-
tained with (19). The curves in Figure 1 represent velocity
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Figure 1. Velocity profiles computed with (19)
vs. benchmark results of Ghia et al. (1982)
(solid dots). Driven Cavity flow at Re = 100.

profiles through the geometrical center of the cavity com-
puted using uniform triangulations of 18, 23, and 33 bi-
quadratic elements.

An estimate similar to (21) is valid for the velocity-
pressure-stress first-order system, regardless of the choice
of the boundary conditions. As a result, a basic L2 func-
tional for the associated Stokes problem is not optimal.

An example of a first-order formulation that leads to a
theoretically optimal basic L2 functional is given by the
velocity-flux system (11), (2), and (10), augmented with
the two additional constraints (12)-(13). The relevant a
priori estimate for the augmented system is given by (see
Cai et al. (1997))

‖U‖1 + ‖u‖1 + ‖p‖1 ≤ C(‖U−∇ut‖0 (22)
+ ‖ − ν(∇ ·U)t + Utu +∇p− f‖0
+ ‖∇ · u‖0 + ‖∇(trU)‖0 + ‖∇ ×U‖0) .

The two constraints (12)-(13) are essential for (22) to
be valid, i.e., the H1-norms of the variables cannot be
bounded without the last two terms in (22); see Cai et al.
(1997). As a result, a basic least-squares functional of the
form

J (U,u, p) = ‖ − ν(∇ ·U)t + Utu +∇p− f‖20
+ ‖∇ · u‖20 + ‖U−∇ut‖20
+ ‖∇(trU)‖20 + ‖∇ ×U‖20 (23)

Table 3. Convergence rates for quadratic-linear
approximations

H1 error rates
Function BC1 BC1W Optimal

u 0.14 1.91 2.00
ω 0.16 1.22 1.00
r 0.16 1.21 1.00

yields optimal discretization errors, see Table 2 and
Bochev et al. (1996).

5 WEIGHTED L2 METHODS
The estimate (21) indicates that, for the velocity boundary
condition, an optimal functional should use the residual
norms ‖∇ × u − ω‖1 and ‖∇ · u‖1, instead of the L2-
norms that appear in (19). This norms are impractical in
the sense that they require discretization by finite element
spaces that are continuously differentiable across the ele-
ment edges. The main idea of the weighted least-squares
approach is to replace such norms by properly scaled L2-
norms. The appropriate scaling factor can be determined
using, e.g., the inverse inequality ‖qh‖1 ≤ Ch−1‖qh‖0;
see Ciarlet (1978). This inequality suggests that, for finite
element functions, one can “simulate” the norm ‖qh‖1 by
h−1‖qh‖0, i.e., the two H1 residuals can be substituted by
h−1‖∇×u−ω‖0 and h−1‖∇·u‖0, respectively. Analy-
sis of the corresponding weighted least-squares method
for the velocity-vorticity-pressure Stokes equations can
be found in Bochev and Gunzburger (1994). This anal-
ysis suggests that one may use polynomials of one degree
lower for the pressure and vorticity than one uses for the
velocity, and that with the velocity boundary condition the
weights are necessary for the validity of optimal error es-
timates. For example, the use of piecewise quadratic poly-
nomials for the velocity and piecewise linear polynomials
for the vorticity and the pressure gives the estimate

‖u− uh‖1 + ‖r − rh‖0 + ‖ω − ωh‖0 = O(h2)

Using the inverse inequality one can also show that

‖r − rh‖1 + ‖ω − ωh‖1 = O(h).

These estimates, as well as the importance of the weights
for achieving optimal convergence rates, are illustrated in
Table 3 (see Deang and Gunzburger (1997)). In this ta-
ble columns (BC1W) and (BC1) correspond to results ob-
tained with and without the weights in the functional, re-
spectively.

These and other preliminary theoretical and com-
putational results indicate the following choice of a
least-squares functional for the velocity-vorticity-pressure
Navier-Stokes equations:

J (ω,u, r) =
1
2

(
ν−2‖ν∇× ω +∇r + ω × u− f‖20

+ h−2‖∇ × u− ω‖20 + h−2‖∇ · u‖20
)

.(24)
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Note that the vorticity transport equation in (24) is
weighted by the square of the Reynolds number. The need
for such a weight comes from theoretical considerations,
however, it can be used to explain the paradox that com-
putations with the unweighted functional (19) yield good
results while analyses seem to indicate that one should
use the functional (24). Indeed, it is often the case that
one chooses h to depend on ν, at least locally, e.g., in
boundary layers. This is particularly true for moderate
and high values of Re, where efficient numerical solution
of the Navier-Stokes equations usually requires the use of
highly nonuniform grids to resolve boundary layers. If,
for example, one chooses h = O(ν), then the functionals
(19) and (24) differ only by an unimportant constant scale
factor, i.e., computationally these functionals are equiva-
lent.

6 NEGATIVE NORM METHODS
Our last example involves a method that represents a rela-
tively recent development in the least-squares approach.
To illustrate the main ideas we use again the velocity-
vorticity-pressure first-order system. Using the ADN the-
ory one can show validity of the following a priori esti-
mate for the associated first-order Stokes operator along
with the velocity boundary condition:

‖ω‖0 + ‖r‖0 + ‖u‖1 ≤ C(‖∇ × u− ω‖0
+‖ν∇× ω +∇r‖−1 + ‖∇ · u‖0) . (25)

Note that as in (21) vorticity and pressure cannot have
the same differentiability order as the velocity field. Ac-
cording to (25) an optimal least-squares method can be
devised using a functional given by

J (ω,u, r) =
1
2

(
ν−2‖ν∇× ω +∇r + ω × u− f‖2−1

+ ‖∇ × u− ω‖20 + ‖∇ · u‖20
)

. (26)

Because the H−1 norm is not computable, the functional
(26) is not any more practical than, e.g., a functional in-
volving the terms ‖∇ × u − ω‖1 and ‖∇ · u‖1. The key
to a practical method, suggested in Bramble et al. (1994),
is to replace ‖ · ‖−1 by a discrete equivalent norm given
by ‖ · ‖2−h = ((h2I + Bh)·, ·)0, where Bh denotes a pre-
conditioner for the Laplace operator 4. Note that with

the choice Bh ≡ 0 we obtain the weighted functional
(24) scaled by the common (and unimportant for the min-
imization) factor h2. If h = O(ν) this functional is again
computationally equivalent to the unweighted functional
(19).

7 METHODS FOR OPTIMAL
CONTROL

In this section we present a novel application of least-
squares methods that involves an optimal boundary con-
trol problem for the driven cavity flow; see Bochev and
Bedivan (1997). The model problem that is considered
here is due to Desai and Ito (1994). Customarily, the
velocity boundary condition for the driven cavity flow
(f = 0) specifies u = (1, 0) on the top surface, and
zero otherwise. If the bottom surface is also allowed to

0 5 10 15 20 25 30 35
0

5
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15

20

25

30

35

Re=20

Figure 2. Flow separation for uB = 0.1, uT = 1.0

move in the same direction, i.e., if u = (uB , 0) on this
surface, then computational experiments indicate that the
flow tends to separate into two regions, see Figure 2.
Thus, one can argue that there exists a horizontal line ΓS ,
such that u · nS = 0 along ΓS . Based on this observa-
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tion Desai and Ito (1994) proposed the following optimal
control problem:

Given the bottom velocity uB = (uB , 0), find
the top velocity uT = (uT , 0) such that sepa-
ration of the flow occurs at a desired horizontal
line location ΓS .

The cost functional associated with this problem is given
by

J(u, p,uT ) =
∫

ΓS

|u · nS |2 =
∫

ΓS

|v|2 dΓ , (27)

where v denotes the second component of the velocity
field. In what follows we shall develop the least-squares
optimal control method for this problem in the context of
the velocity-vorticity-pressure Navier-Stokes equations.
The main idea is to penalize a least-squares functional for
the state equations using a properly weighted cost func-
tional (27). The new objective functional is then mini-
mized over a suitable set of admissible states.

Below we develop the least-squares method for a dis-
tributed control form of the model problem. For this
purpose, let U0 = (ω0,u0, r0) denote a solution of the
velocity-vorticity-pressure Stokes problem with boundary
condition given by u = (uB , 0) on the bottom surface,
and zero otherwise. Similarly, let U1 = (ω1,u1, r1) de-
note solution of the same equations with u = (1, 0) on
the top surface, and zero otherwise. Then, the optimal
solution is sought in the form Ul = (ωl,ul, rl) where

ωl = ω+ω0+lω1; ul = u+u0+lu1; rl = r+r0+lr1,

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

Optimal flow

Figure 3. Optimal flow for uB = 0.1 and ΓS -
horizontal line through the cavity center.

and U = (ω,u, r) are unknown functions, such that u =
0 on Γ, i.e., the control is introduced via the scalar l. As a
result, the distributed control problem is given by

minimize∫
ΓS

|vl|2dΓ =
∫

ΓS

|v + v0 + lvl|2dΓ

subject to

ν∇× ω + ωl × ul +∇r = 0 in Ω
∇× u− ω = 0 in Ω

∇ · u = 0 in Ω
u = 0 on Γ .

The state equations in the above control problem were
obtained by evaluating the velocity-vorticity-pressure
Navier-Stokes equations at ωl, ul and rl. Then we have
used the fact that ωi, ui and ri solve a Stokes problem
with a homogeneous right hand side. With the distributed
control problem we associate a penalized least-squares
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functional given by

J(ω,u, r, l) = ‖ν∇× ω +∇r + ωl × ul‖20
+ ‖∇ × u− ω‖20 + ‖∇ · u‖20

+ α

∫
ΓS

|vl|2dΓ . (28)

Let Xh denote a finite element space for
the approximation of the unknown func-
tions (ω,u, r) and let [0, L], L > 0,
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t
o
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1/h^2

1/h

1

Figure 4. uT approximations computed with α
equal to 1, 1/h and 1/h2

denote the admissible set for the control parameter l.
Then, we have the following discrete least-squares opti-
mization problem:

seek Uh = (ωh,uh, rh) ∈ Xh and l ∈ [0, L]
such that

J(ωh,uh, rh, l) ≤ J(ξh,vh, qh, k)

for all V h ∈ Xh, and k ∈ [0, L].

The necessary condition for this problem can be obtained
by setting the first variation of (28) to zero. This yields a
nonlinear algebraic system of equations for the unknown
discrete functions (ωh,uh, ph) and the unknown control
value l. This system is solved using Newton lineariza-
tion combined with assembly-free preconditioned conju-
gate gradients solver. The weight α in (28) has great im-
portance for the quality of the computed optimal control

value uT . This weight can be determined using a scal-
ing argument. More precisely, if u is in H1(Ω), then its
restriction on ΓS is in H1/2(ΓS). For discrete functions
the appropriate scaling factor that relates the trace norm
on H1/2(ΓS) with an L2 norm is given by 1/

√
h. As a

result, we choose α = 1/h.
To illustrate this method computationally we consider

the optimal control problem with the following parame-
ters: Re = 10, uB = 0.1, and ΓS is the horizontal line
through the center of the cavity. Thus, the expected op-
timal value of the top velocity is also equal to 0.1. Cor-
responding numerical results are presented in Figures 3-
4. Figure 3 contains the optimal flow computed with
the least-squares control method using triangulation of
19 by 19 biquadratic elements. Figure 4 illustrates how
the choice of the weight α affects the computed opti-
mal value. Computations for this experiment were car-
ried over a sequence of triangulations, starting from 4 by
4 biquadratic elements. From this figure we can see that
α = 1/h provides better asymptotic rate than α = 1/h2

and better approximations than α = 1.
The Dirichlet control used in the model

problem has limited scope for high values
of the Reynolds number; thus our main goal
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Figure 5. Multiple separation lines in the driven
cavity flow for uB = uT = 0.1
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was to illustrate how least-squares ideas can be applied
for the solution of optimal control problems. In fact,
for Re ≥ 200 separation in the driven cavity flow oc-
curs along multiple lines, i.e., the optimal control problem
does not have a unique solution. This is illustrated by the
numerical results presented in Figure 5. The driven cav-
ity flow in this figure has been computed with Re = 400
and using boundary conditions given by u = (0.1, 0) on
both the bottom and the top surfaces, and zero otherwise.
Similar results were obtained for values of the Reynolds
number up to 1000.
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